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We show that a generalized Landau theory for the smectic-A–smectic-C �Sm-A–Sm-C� phases exhibits a
biaxiality induced Sm-A–Sm-C tricritical point. Proximity to this tricritical point depends on the degree of
orientational order in the system; for sufficiently large orientational order the Sm-A–Sm-C transition is three-
dimensional XY-like, while for sufficiently small orientational order, it is either tricritical or first order. We
investigate each of the three types of Sm-A–Sm-C transitions near tricriticality and show that for each type of
transition, small orientational order implies de Vries behavior in the layer spacing, an unusually small layer
contraction. This result is consistent with, and can be understood in terms of, the “diffuse cone” model of de
Vries. Additionally, we show that birefringence grows upon entry to the Sm-C phase. For a continuous
transition, this growth is more rapid the closer the transition is to tricriticality. Our model also predicts the
possibility of a nonmontonic temperature dependence of birefringence.
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I. INTRODUCTION

Since its discovery in the 1970s �1�, the nature of the
smectic-A–smectic-C �Sm-A–Sm-C� transition has been a
topic of great interest. Early work showed that many systems
exhibit a continuous Sm-A–Sm-C transition which could be
described by a mean-field model near tricriticality �2�. A tri-
critical point, with associated neighboring second-order and
weakly first-order transitions was later found �3,4�. The ori-
gin of a Sm-A–Sm-C tricritical point has been of significant
interest, with two main mechanisms having been proposed.
The first is the coupling of the tilt to biaxiality, which in
chiral systems are related to the size of spontaneous polar-
ization �3,4�. The second is the width of the Sm-A phase �5�.
Another mechanism, involving a coupling between tilt and
smectic elasticity, has also been proposed �6�, but this seems
less likely. Until now, a comprehensive theory that addresses
the effect of biaxiality on the nature of the Sm-A–Sm-C tran-
sition has not been produced.

More recently, much attention has been given to de Vries
materials, which exhibit a Sm-A–Sm-C transition with an
unusually small change in layer spacing and a significant
increase in birefringence �associated with an increase in ori-
entational order� upon entry to the Sm-C phase �7�. Some de
Vries materials exhibit another unusual feature, namely, a
birefringence that varies nonmonotonically with temperature
�8,9�; in particular, the birefringence decreases as the
Sm-A–Sm-C transition is approached from within the Sm-A
phase. de Vries materials generally seem to have unusually
small orientational order and follow the phase sequence
isotropic �I�–Sm-A–Sm-C. In several de Vries materials, the
Sm-A–Sm-C transition seems to occur close to tricriticality
�12,13�.

Separate theoretical models �10,11� have been developed,
each of which predicts the possibility of a continuous
Sm-A–Sm-C transition with the two main signatures of de

Vries behavior: small layer contraction and increase in bire-
fringence upon entry to the Sm-C phase. There are differ-
ences between the assumptions used in the models, the most
significant of which is the treatment of the temperature de-
pendence of the layering order parameter; the model of
Gorkunov et al. �11� does not take this into account while
that of Saunders et al. does �10�. Given the absence of a
nematic phase in de Vries materials, incorporating the tem-
perature variation of the layering order parameter is of cru-
cial importance in the modeling of de Vries materials. It
seems most likely that the I–Sm-A transition in de Vries
materials is primarily driven by the development of layering
order, with orientational order being secondarily induced by
the layering order. This is consistent with the general obser-
vation �7� that de Vries materials have unusually strong lay-
ering order and unusually weak orientational order. Addition-
ally, only by including temperature-dependent layering, does
one predict �10� the unusual, yet experimentally observed
�8,9�, possibility of a nonmonotonic temperature dependence
of birefringence.

Neither model considers the effect of biaxiality on the
Sm-A–Sm-C transition. The model of Gorkunov et al. inves-
tigates the possibility of an Sm-A–Sm-C transition that has
signatures of tricriticality, but does not predict a tricritical
point or the possibility of a first-order Sm-A–Sm-C transi-
tion.

In this article, we present and analyze a new generalized
nonchiral Landau theory, based on that developed in Ref.
�10�, which includes orientational, layering, tilt, and biaxial
order parameters. The model naturally produces a coupling
between tilt and biaxiality and we show that this coupling
leads to a Sm-A–Sm-C tricritical point. We show that the
effect of biaxiality is stronger in systems with small orienta-
tional order M0 so that a tricritical point and associated
neighboring first-order transition can be accessed by systems
with sufficiently small orientational order, M0�MTC. Here
MTC is the value of the orientational order at which the sys-
tem exhibits a tricritical Sm-A–Sm-C transition. This means
that the two mechanisms that have been proposed as leading*ksaunder@calpoly.edu

PHYSICAL REVIEW E 77, 061708 �2008�

1539-3755/2008/77�6�/061708�13� ©2008 The American Physical Society061708-1

http://dx.doi.org/10.1103/PhysRevE.77.061708


to tricriticality, the coupling of tilt to biaxiality and the width
of the Sm-A phase, may in fact be two sides of the same
coin. Systems with a narrow Sm-A phase, which are thus
close to the I phase, will have small orientational order
which according to our model, leads to an enhanced effect of
the biaxiality on the nature of the Sm-A–Sm-C transition. For
materials with excluded volume interactions, a decrease in
orientational order could be achieved by decreasing concen-
tration.

Figure 1 shows the phase diagram for our model near the
tricritical point in temperature- �T-� concentration �c� space,
along with the three different types of transitions: XY-like,
tricritical, and first order. In each case the transition from the
Sm-A phase to the Sm-C phase implies a tilting of the optical
axis away from the normal to the smectic layers by an angle
�, as shown schematically in Fig. 2. Our model gives the
expected temperature dependence of � for each type of tran-
sition, as summarized in Fig. 3. For both the XY-like and
tricritical transitions the growth of � with decreasing tem-
perature is continuous, although with different scaling for
each transition. It should be noted that here, and throughout
the article, exponents are calculated within mean-field

theory, and do not include the effects of fluctuations. For
example, it is known that when fluctuation effects are in-
cluded in analysis of the three-dimensional �3D� XY transi-
tion, � scales as �1− T

TC
��, with ��0.35, whereas in mean-

field theory �=0.5. The use of mean-field theory is justified
by the fact that virtually all continuous Sm-A–Sm-C transi-
tions are observed to be mean-field-like.

For the first-order transition the tilt angle � jumps discon-
tinuously at the transition. Our model also leads to the ex-
pected �2� temperature dependence of specific heat cV near
the continuous Sm-A–Sm-C transition. This temperature de-
pendence is shown in Fig. 4. For an XY-like transition cV
jumps by an amount �cV as the system enters the Sm-C
phase. If the transition becomes tricritical �M0→MTC+, via
decreasing concentration�, the size of this jump diverges. Our
model predicts that the divergence should scale as

FIG. 1. Phase diagram in temperature- �T-� concentration �c�
space. For materials with excluded volume interactions, increasing
the concentration would lead to an increase in the orientational
order. The solid line represents the continuous Sm-A–Sm-C bound-
ary while the dashed line represents the first-order Sm-A–Sm-C
boundary. These two boundaries meet at the tricrtical point:
�TTC,cTC�. The dotted line indicates the region in which the behav-
ior in the Sm-C phase crosses over from XY-like to tricritical. The
region in which the behavior is XY-like shrinks to zero as the
tricritical point is approached. Also shown as double ended arrows,
are the three distinct classes of transitions �at fixed concentration�:
XY-like, tricritical, and first order.

FIG. 2. A schematic showing the layer normal and optical axis.
The layers are shown as dashed lines. The transition from the Sm-A
to -C phase occurs via a tilting, by angle �, of the optical axis away
from the layer normal.

FIG. 3. The tilt angle � as a function of reduced temperature t
��1− T

TC
� near the Sm-A–Sm-C transition temperature TC, i.e., for

t�1. Upon entry to the Sm-C phase the growth of the tilt angle
scales as �t�1/2 for a mean-field XY-like transition. For a tricritical
transition it scales as �t�1/4 and is thus more rapid. For a first-order
transition there is a jump in the tilt angle upon entry to the Sm-C
phase.

FIG. 4. The specific heat cV as a function of reduced tempera-
ture t��1− T

TC
� near the continuous Sm-A–Sm-C transition tem-

perature TC, i.e., for t�1. As the transition is approached from the
Sm-C phase, the specific heat grows as cV� �1− T

Tm
�−1/2, where Tm

�TC. This growth is cut off at T=TC, where it reaches a maximum
value �cV. If the transition becomes tricritical Tm→TC and cV di-
verges at the transition. Note that the specific heat shown here only
includes the contribution from the piece of the free energy density
associated with the ordering as the system moves into the Sm-C
phase. For a first-order transition there will be a latent heat absorbed
in going from the Sm-C phase to the Sm-A phase.
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�cV �
1

M0 − MTC
. �1�

For a first-order Sm-A–Sm-C transition there is an associated
latent heat l. We show that if the transition becomes tricriti-
cal �M0→MTC−, via increasing concentration� then the latent
heat vanishes as

l � �MTC − M0� . �2�

The model is also used to examine the behavior of the
layer spacing and birefringence for the three possible transi-
tions �XY-like, tricritical, first order�. We show that, for all
three types of transitions, an unusually small layer contrac-
tion can be directly attributed to unusually small orienta-
tional order M0. Specifically, we find that for any of the three
possible types of transitions

�d � M0�1 − cos���� �
1

2
M0�2, �3�

where the tilt angle � is small near a continuous or weakly
first-order transition. We define the layer contraction as �d
��dAC−dC� /dAC, where dAC and dC are the values of the
layer spacing in the Sm-A phase �right at the Sm-A–Sm-C
boundary� and in the Sm-C phase, respectively. Schematic
plots of �d vs �2 are shown in Fig. 5 for two types of sys-
tems: one “ de Vries–like” and the other “conventional.” The
de Vries–like system has small orientational order M0�1
and thus has a small slope of �d vs �2, which corresponds to
small layer contraction. The “conventional” system has
strong orientational order M0=O�1�, and thus has a larger
slope, which corresponds to significant layer contraction. It
should be noted that for a first-order transition there will be a
jump in the tilt angle � at the transition and thus, the �d vs �2

line would not extend all the way to zero.
This result of our rigorous theory complements the simple

geometric diffuse cone argument of de Vries �14�, which is
shown in Fig. 6. The conventional, but oversimplified, rela-
tionship between layer contraction and tilt angle �d
= �1−cos���� is obtained geometrically by assuming a liquid
crystal with perfect orientational order, as shown in Fig. 6�a�.

FIG. 5. The layer contraction �d��dAC−dC� /dAC as a function
of �2 near the Sm-A–Sm-C transition. For any type of transition the
contraction will scale as M0�2. Thus, the slope of �d versus �2

is proportional to the orientational order M0 in the system. Near
tricriticality, the orientational order is small and M0�1 and so the
contraction is also small. Also shown is the layer contraction for a
system with strong orientational order M0�1, for which the con-
traction will be sizable. For a first-order transition there will be a
jump in the tilt angle � at the transition and, thus, the �d vs �2 line
does not extend all the way to zero.

FIG. 6. �Color online� �a� An oversimplified schematic showing the arrangement of molecules in the Sm-A phase, in which the
orientational order is perfect. Such a model predicts that, as the system moves into the Sm-C phase, the layer spacing should contract
according to �d��1−cos����, where �d= �dAC−dC� /dAC. �b� A more realistic arrangement of the molecules in which the molecular axes are
tilted away from the optical axis, but in azimuthally random directions. The more that the molecules are tilted, the smaller the orientational
order. As the system moves into the Sm-C phase, the “pretilted” molecules do not need to tilt but rather need only to order azimuthally, thus
leading to an unusually small layer contraction. Thus, the smaller the orientational order in the Sm-A phase, the more pretilted the molecules
will be and the smaller the layer contraction will be, an interpretation consistent with our result, Eq. �3�. The figure also shows that, as a
result of the azimuthal ordering as the system moves into the Sm-C phase, it should become more orientationally ordered.
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However, it has long been known that the orientational order
in liquid crystals is far from perfect. The schematic in Fig.
6�b� shows a more realistic arrangement of the molecules in
the Sm-A phase. The molecular axes are tilted away from the
optical axis, but in azimuthally random directions. One can
see that the more the molecules are tilted, the smaller the
orientational order in the Sm-A phase. The diffuse cone
model argues that, upon entry to the Sm-C phase, the
“pretilted” molecules do not need to tilt but rather need only
to order azimuthally, thus leading to an unusually small layer
contraction. Thus, the smaller the orientational order in the
Sm-A phase, the more pretilted the molecules will be and the
smaller the layer contraction will be. As shown in Eq. �3�,
our rigorous theoretical analysis predicts a small contraction
for systems with small orientational order, which agrees with
this geometric argument. It also correlates well with the gen-
eral experimental observation �7� that de Vries materials
have small orientational order.

From Fig. 6�b� one also expects a growth of orientational
order, and hence birefringence �n, as the system moves into
the Sm-C phase. It is useful to define a fractional change in
birefringence ��n�

�n−�nAC

�nAC
, where �nAC is the value of the

birefringence in the Sm-A phase right at the Sm-A–Sm-C
boundary. Our model predicts that upon entry to the Sm-C
phase, for any of the three types of transitions �XY-like, tri-
critical, first order�, ��n of a de Vries type material will grow
according to ��n��2. While the dependence of ��n on � is
the same for all three types of transitions, its dependence on
temperature is not the same because, as shown in Fig. 3, �
scales differently with temperature for each type of transi-
tion. Thus,

��n � �2 ��	1 −
T

TC

 XY-like,

	1 −
T

TC

1/2

tricritical,

jump first order.
� �4�

The growth of ��n as a function of reduced temperature t
�� T

TC
−1� is shown in Fig. 7. For an XY-like transition the

growth will be linear ��t�, while for a transition at tricritical-
ity it scales as ��t�1/2 and is thus more rapid. For a first-order
transition there will be a jump in the tilt angle and thus an
associated jump in ��n, although near tricriticality, where the
transition is only weakly first order, the jump will be small.

Our model also predicts �for materials with excluded vol-
ume interactions� the possibility of birefringence that de-
creases as the Sm-A–Sm-C transition is approached from the
Sm-A phase, which, as discussed above, is an unusual feature
that has been observed experimentally �8,9�. For any of the
three types of transitions ��n decreases linearly with tem-
perature as the transition is approached from the Sm-A
phase, as shown in Fig. 7. The decrease in birefringence is
particularly unusual, as it indicates that the system is becom-
ing less ordered �orientationally� as a lower symmetry
�Sm-C� phase is approached. To the best of our knowledge,
this is the first example of such a phenomenon.

It should be emphasized that our analysis is only made
tractable, and thus is only valid, in the limit of weak coupling
between order parameters. This means that our results do not
imply that all materials with small orientational order will
have Sm-A–Sm-C transitions close to tricriticality or will
exhibit de Vries behavior. Similarly, not all materials exhib-
iting de Vries behavior must have Sm-A–Sm-C transitions
near tricriticality. In other words, the conclusions that our
model leads us to are generic but not ubiquitous. The remain-
der of this article is organized as follows. In Sec. II we in-
troduce our model and in Sec. III we locate and analyze the
biaxiality induced tricritical point. We then analyze the na-
ture �XY-like, tricritical, first order� of the Sm-A–Sm-C tran-
sition near this tricritical point in Sec. IV. In Sec. V we
examine the thermodynamic nature of each type of transi-
tion. Specifically, we calculate the specific and latent heats
for the continuous and first-order transitions, respectively.
Last, we study the behavior of the layer spacing and birefrin-
gence near the Sm-A–Sm-C transition in Sec. VI. We briefly
summarize our results in Sec. VII. The Appendix includes
details of the analysis from Sec. VI.

II. MODEL

The starting point for our analysis is a generalized version
of the free energy density introduced in Ref. �10�, which
includes orientational, tilt �azimuthal�, biaxial, and layering
order parameters. The complex layering order parameter 	 is
defined via the density 
=
0+ Re�	eiq·r� with 
0 constant
and q the layering wave vector, the arbitrary direction of
which is taken to be z. The remaining order parameters are
embodied in the usual second rank tensor orientational order
parameter Q, which is most conveniently expressed as

FIG. 7. The fractional change in birefringence ��n�
�n−�nAC

�nAC
as

a function of reduced temperature t��1− T
TC

� near the Sm-A–Sm-C
transition temperature TC, i.e., for t�1. For materials with excluded
volume interactions, we expect the birefringence �n, and thus ��n,
to decrease as the Sm-A–Sm-C transition is approached from within
the Sm-A phase. For all three types of transitions �XY-like, tricriti-
cal, first-order� this decrease will scale linearly �t with reduced
temperature. Upon entry to the Sm-C phase the birefringence �n,
and thus ��n, will grow. The growth is linear ��t� for a mean-field
XY-like transition. For a tricritical transition the growth scales as
��t�1/2 and is thus more rapid. For a first-order transition there will
be a jump in birefringence as the system enters the Sm-C phase.
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Qij = M��− cos��� + 3 sin����e1ie1j

+ �− cos��� − 3 sin����e2ie2j + 2 cos���e3ie3j� ,

�5�

where ê3=c+1−c2ẑ is the average direction of the mol-
ecules’ long axes �i.e., the director�. Here, in either smectic
phase, ẑ is normal to the plane of the layers. The projection
c of the director onto the layers is the order parameter for the
Sm-C phase. The other two principal axes of Q are given by
ê1= ẑ� ĉ and ê2=1−c2ĉ−cẑ. These unit eigenvectors are
shown in Fig. 8. The amount of orientational order is given
by M �Tr�Q2�, which is thus proportional to the birefrin-
gence. The degree of biaxiality is described by the parameter
�. The Sm-A phase is untilted �c=0� and uniaxial ��=0�,
while the Sm-C phase is tilted �c�0� and biaxial ���0�.
From Fig. 8 it can be seen that the angle �, by which the
optical axis tilts, can be related to c via c=sin���. Taking
both 	 and Q to be spatially uniform allows the use of a
Landau free energy density f = fQ+ f	+ fQ	, with the orienta-
tional �fQ�, layering �f	�, and coupling �fQ	� terms given by

fQ =
tn Tr�Q2�

12
−

w Tr�Q3�
18

+
un�Tr�Q2��2

144
, �6�

f	 =
1

2
ts�	�2 +

1

4
us�	�4 +

1

2
K�q2 − q0

2�2�	�2, �7�

fQ	 =
qiqj�	�2

2
�− �a�q2� − b�q2��	�2�Qij + g�q2�QikQjk

+
h�q2�

2
qkqlQklQij −

s�q2�
4

�qkqlQkl�2Qij� , �8�

where the Einstein summation convention is implied and qi
�qiz. As usual in Landau theory, the parameters tn and ts
are monotonically increasing functions of temperature and
control the “bare” orientational and layering order param-
eters M0 and 	0, respectively. By “bare” we mean the values
the order parameters would take on in the absence of the

coupling term fQ	. Similarly, the constant q0 is the bare value
of the layering wave vector. From Eq. �7� above, we imme-
diately find �	0�=−ts /us. The remaining parameters in fQ
and f	 �w ,un ,us ,K� are positive constants.

The coupling piece of the free energy fQ	 includes the
lowest order �in fields 	 and Q� terms necessary to obtain an
Sm-A–Sm-C transition with tricriticality. The dependence on
q2 of each of the coupling parameters, a, b, g, h, and s, takes
into account all other possible terms that have the same ten-
sorial form, but with higher powers of q2, which is not an
order parameter and is therefore not assumed to be small. For
weak coupling q�q0 we can Taylor expand each coupling
parameter, e.g., a�q2��a0+a1�q2−q0

2�, where a0�a�q0
2� and

a1�� da
d�q2� �q2=q0

2. For all but one of the couplings it is sufficient
to use the zeroth order approximation, e.g., g�q2��g0. It will
be seen below that a1, the first-order correction to a0, is
necessary for layer contraction at the Sm-A–Sm-C transition.
For notational convenience, we will, for the remainder of the
article, write a�q2� as a with the q2 dependence implied. To
render the analysis tractable, the coupling parameters are all
assumed to be small and are treated perturbatively through-
out.

The relatively large number of parameters in f is inevi-
table given the fact that the theory incorporates four types of
order, layer spacing, and also allows for continuous, first-
order, and tricritical Sm-A–Sm-C transitions. Additionally, it
will be shown that proximity to tricriticality and the signa-
tures of de Vries behavior can be interpreted simply in terms
of the size of the orientational order.

III. BIAXIALITY-INDUCED Sm-A–Sm-C
TRICRITICAL POINT

To investigate the nature of the Sm-A–Sm-C transition,
we expand the part of the free energy density involving ori-
entational order, fQ+ fQ	 in powers of the biaxial and tilt
order parameters � and c. This expansion is done near the
continuous Sm-A–Sm-C transition temperature TC �i.e., for
�T−TC� /TC�1� and to lowest order in M and 	. We find
fQ+ fQ	� fM + fcoup. The piece fM only involves the orienta-
tional order parameter M and is given by

fM =
1

2
tnM2 −

1

3
wM3 +

1

4
unM4. �9�

From fM we immediately find the bare value of orientational
order M0�tn�= �w+w2−4untn� /2un. It is useful to write the
orientational order as a combination of the bare value and a
correction: M =M0�1+�M�, where the correction �M is due
to the coupling piece fcoup. The correction �M can be thought
of as an augmentation of the bare orientational order M0 due
to the presence of layering order. As discussed in Ref. �10�,
de Vries behavior is implied by a virtually athermal tn �and
thus an athermal M0�, so that for a given material M0 can be
thought of as a fixed quantity. This would correspond to
almost perfect excluded volume short range repulsive mo-
lecular interactions. This means that the temperature varia-
tion in orientational order M is effectively due to its coupling
to the temperature-dependent layering, i.e., via �M. We as-

FIG. 8. �Color online� The unit eigenvectors ê1, ê2, ê3 of the
orientational order tensor Q. These are shown as solid arrows, with
ê1 pointing into the page. Also shown, as a dotted arrow, is the
layering direction ẑ, which is normal to the plane of the layers. The
eigenvector ê3 corresponds to the average direction of the mol-
ecules’ long axes. The order parameter c for the Sm-C phase is the
projection of ê3 onto the plane of the layers, and is shown as a
dashed arrow. The angle �, by which the optical axis tilts, is also
shown.
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sume and verify a posteriori that in the limit of weak cou-
pling �M �1. Similarly, we express the wave vector as q2

=q0
2�1+�q� and the layering order as �	�2= �	0�2�1+�	�. The

bare wave vector q0 is also taken to be athermal but the bare
layering order parameter 	0 is not.

The coupling piece can be broken up into three pieces:
fcoup= fM	+ fc+ f�c. The piece fM	 involves a coupling be-
tween layering and orientational order that is nonzero in both
Sm-A and -C phases, and is given by

fM	 = q2�	�2M�− a� + g0M − h0q2M� , �10�

where

� = 1 −
b0�	�2 + �g0 + 2h0q2�M

a
. �11�

The piece fc involves the tilt �azimuthal� order parameter c
and is given by

fc =
1

2
rcc

2 +
1

4
ucc

4 +
1

6
vcc

6. �12�

The coefficients rc, uc, vc are given by

rc = 3aq2�	�2M� , �13�

uc = 9h0q4�	�2M2, �14�

vc =
81

4
s0q6�	�2M3. �15�

At the continuous Sm-A–Sm-C transition the parameter �
�and thus also rc�, changes sign. Close to the transition �
� �T−TC� /TC�1 and can be considered small. From Eq.
�11� we see that to lowest order in the corrections �M,q,	 and
for athermal M0, this transition occurs due to layering order
increasing as temperature decreases. The transition tempera-
ture TC is defined via �	0�TC��=�a0− �g0+2h0q0

2�M0� /b0 or,
equivalently,

ts�TC� = −
us�a0 − �g0 + 2h0q0

2�M0�
b0

. �16�

This continuous phase boundary is shown as a solid line in
Fig. 9, the phase diagram in ts-M0 space. For a given mate-
rial, decreasing the temperature would, in the phase diagram
of Fig. 9, correspond to moving horizontally from right to
left. The size of the orientational order M0 should increase
with concentration. Thus, the topology of the corresponding
phase diagram, Fig. 1, in temperature-concentration space
should essentially be the same as that shown in Fig. 9.

The coupling between tilt and biaxiality appears in the
final piece are

f�c = A��c2 +
1

2
B��2, �17�

where, to lowest order in �,

A� =
33

2
g0q2�	�2M2, �18�

B� = 3M2�wM − g0q2�	�2� . �19�

From Eq. �17� we see that biaxiality is induced by tilt order.
Minimization gives

� = − ��c2, �20�

where �� can be thought of as a biaxial susceptibility and is
given by

�� =
3

2
	 wM

g0q2�	�2
− 1
−1

. �21�

Keeping in mind the weak-coupling regime of our analysis,
i.e., g0�1, we see that the systems with small orientational
order M will have large biaxial susceptibility. Thus, large
biaxiality �and for chiral materials, an associated large spon-
taneous polarization� can be directly attributed to small ori-
entational order. In fact, Eq. �21� predicts that the biaxial
susceptibility will be largest in systems that have a combina-
tion of weak orientational order �M� and strong layering or-
der ��	��. It has been observed �7� that this combination may
be common in de Vries materials. It should be noted that the
expression for �� is only valid for M �ML�g0q2�	�2 /w, be-
low which terms we have neglected become important. How-
ever, we will see that the tricritical point we predict occurs at
a value of M �ML.

The effect of the biaxiality on the Sm-A–Sm-C transition
is to renormalize the quartic coefficient in Eq. �12�, giving

FIG. 9. The phase diagram in ts-M0 space near the tricritical
point �tsTC

,M0TC
�. The quantity M0 is a measure of how much bare

orientational order the system possesses and for de Vries materials
is effectively athermal. Increasing concentration should increase
M0. The quantity ts is a monotonic function of temperature so that
for a given material, decreasing the temperature corresponds to
moving horizontally from right to left. The topology of the corre-
sponding phase diagram in temperature-concentration space should
essentially be the same. The solid line represents the continuous
Sm-A–Sm-C boundary while the dashed line represents the first-
order Sm-A–Sm-C boundary. These two boundaries meet at the
tricritical point �tsTC

,M0TC
�. The dotted line indicates the region in

which the behavior crosses over from XY-like to tricritical. The
region in which the behavior is XY-like shrinks to zero as the
tricritical point is approached. The slopes of the first-order and con-
tinuous Sm-A–Sm-C boundaries are equal at the tricritical point.
Also shown as double ended arrows are the three distinct classes of
transitions: XY-like, tricritical, and first order.
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uc� = uc	1 −
g0

3h0q2
��
 . �22�

For small biaxial susceptibility �� �corresponding to strong
orientational order�, the renormalized quartic coefficient uc�
�0 and the Sm-A–Sm-C transition is continuous. For large
�� �corresponding to weak orientational order�, uc��0 and
the transition is first order. The tricritical point occurs at �
=uc�=0, which, to lowest order in the corrections �q,	, cor-
responds to M =MTC with

MTC =
a0g0q0

2

b0w
	1 +

g0

2h0q0
2
 , �23�

which is larger than ML. For small coupling �a0 ,b0 ,g0 ,h0
�1� the value of orientational order MTC at tricriticality will
also be small. In obtaining Eq. �23� we have used Eq. �11� at
tricriticality to find �	0TC

�2�a0 /b0, an approximation that is
valid for small MTC. Equivalently, tsTC

�−usa0 /b0.

IV. Sm-A–Sm-C TRANSITION NEAR
THE TRICRITICAL POINT

Having found the biaxiality induced tricritical point, we
now investigate the nature of the Sm-A–Sm-C transition
in the vicinity of the tricritical point. We analyze both the
continuous Sm-A–Sm-C transition and the first-order
Sm-A–Sm-C transition.

A. Continuous Sm-A–Sm-C transition near tricriticality

For sufficiently large orientational order, M �MTC, the
renormalized quartic coefficient uc��0 and the Sm-A–Sm-C
transition is continuous. As discussed in Sec. III, the phase
boundary is defined via �=0 or, equivalently, ts= ts�TC�.
Upon entry to the Sm-C phase, � becomes negative and,
minimizing the effective fc �i.e., with uc→uc�� with respect to
c we find that the tilt order parameter grows continuously
with increasing ��� as

c = � 2h0�

9s0q2M
	− 1 +1 +

3as0

�h0��
2 ���
�1/2

, �24�

where the effect of the coupling between biaxiality and tilt is
incorporated via a renormalized h0�, which by expanding ��

close to tricriticality �i.e., M �MTC� can be shown to be

h0� = h0	1 +
2h0q2

g0

	M − MTC

MTC

 . �25�

Similar to uc�, h0� changes sign at M =MTC. It is straightfor-
ward to show that sufficiently close to the transition ����
� �����, the dependence of c on � is effectively XY-like and
that sufficiently far from the transition ����� ����� it is tricriti-
cal, i.e.,

c ��cXY = a

3h0�q
2M

�����1/2 ��� � ���� ,

cTC = 	 4a

27s0q4M2
1/4

�����1/4 ��� � ���� .� �26�

The crossover from XY-like to tricritical behavior occurs in
the region �=O���� where �� is the value of � where cXY
=cTC,

���� =
4

3

�h0��
2

as0
. �27�

Near tricriticality where M is small, the corresponding ts� is
given by ts�= ts�TC��1+ ����� and is shown as a dotted line in
Fig. 9. The width of the region in which the behavior is
XY-like shrinks to zero as the tricritical point is approached.
Near the transition, the tilt angle ��c, and its scaling with
temperature is shown in Fig. 3 for both an XY-like and a
tricritical transition. Of course, the XY behavior of Eq. �26�
is that of a mean-field theory and incorporating fluctuation
effects would yield c��� with ��0.35.

B. First-order Sm-A–Sm-C transition near tricriticality

When the orientational order is small enough �M �MTC�
the quartic coefficient �uc�� changes sign. The free energy
now has two local minima, one at c=0 and another at

c1st = � 2�h0��
9s0q2M

	1 +1 −
4�

����

�1/2

. �28�

The first-order Sm-A–Sm-C transition, and the jump from
c=0 to c=c1st occur when the free energy at c1st becomes
smaller than the free energy at c=0. The location of the
first-order boundary can thus be obtained by finding where
the two free energies are equal or, equivalently, where the
difference �f between them is zero. To lowest order in cor-
rections �M,q,	 this difference is just the effective fc �i.e.,
with uc→uc�� evaluated at c1st and is given by

�f =
�h0��

3

27s0
2	1 +1 −

4�

����

2	1 − 21 −

4�

����

 , �29�

which when set to zero yields an expression for the location
of the first-order Sm-A–Sm-C boundary

�1st =
3

16
���� . �30�

This boundary is shown as a dashed line in Fig. 9. At the
transition the tilt order parameter jumps from zero to a value
c1stAC

=�h0�� / �3s0q2M�. Close to tricriticality, where the tran-
sition is weakly first order, c1st is small and ��. The corre-
sponding temperature dependence of � is shown in Fig. 3.
The size of the jump in c �and thus �� goes to zero at the
tricritical point, where h0�→0−.

V. THERMODYNAMIC NATURE OF THE Sm-A–Sm-C
TRANSITION NEAR TRICRITICALITY

We next investigate the thermodynamic nature of the
Sm-A–Sm-C transition near tricriticality. First we analyze the
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specific heat near the continuous transition and then the la-
tent heat at the first-order transition.

A. Specific heat near the continuous Sm-A–Sm-C transition

It is well established �2� that the specific heat will exhibit
a jump at the continuous Sm-A–Sm-C transition and that the
thermodynamic signature of a continuous transition close to
tricriticality is a divergence of this jump �3�. We obtain the

specific heat for our model using cV=−T
d2fc�

dT2 , where the prime
indicates the use of the biaxiality renormalized uc�, as given
by Eq. �22�, in fc. In using fc� instead of the full free energy
density f , we are focusing on the contribution to the specific
heat associated with the onset of ordering as the system
moves into the Sm-C phase. It is this contribution that is
responsible for the specific heat jump. As discussed above,
following Eq. �15�, in a material with athermal M0 the tran-
sition from the Sm-A to -C phase is driven by the layering
order which increases with decreasing temperature. Near tri-
criticality, where the orientational order is small, the value of
the layering order at the transition is �	0�TC���a0 /b0, and
the dimensionless parameter � can be expressed as

� = 1 −
�	0�T��2

�	0�TC��2
� �c	 T

TC
− 1
 , �31�

where we have Taylor expanded �	0�T�� near T=TC and
the dimensionless parameter �c�0 is given by �c

= �−
TC

�	0�TC��2
d�	0�T��2

dT �T=TC
. Using Eq. �31�, the specific heat can

be expressed as

cV = − T	 �c

TC

2d2fc�

d�2 . �32�

In the Sm-A phase, where fc�=0, the specific heat is zero.
Using Eq. �24� for c and Eq. �12� �with uc→uc�� for fc� we
can find the specific heat in the Sm-C phase. Thus we find

cV = �
0 � � 0,

T	 �c

TC

2a2�	0�TC��2

2h0� � 1 + ���

1 +
4���
����

+ ����	1 +
4���
����

− 1
� � � 0.� �33�

Close to tricriticality, where �� is small, the specific heat in
the Sm-C phase near the transition is dominated by the first
term. Substituting ���=�c�1− T

TC
� �valid in the Sm-C phase

where T�TC� into the first term, we find that cV scales as

cV � 	1 −
T

Tm

−1/2

, �34�

where Tm=TC�1+
����
4�c

��TC. This scaling is shown in Fig. 4,
where it can be seen that specific heat grows as the
Sm-A–Sm-C transition is approached from the Sm-C phase.
This growth is cut off at T=TC �or equivalently �=0�, where
it reaches a maximum value. This maximum value is the size
of the specific heat jump at the Sm-A–Sm-C transition and is
found to be

�cV = T	 �c

TC

2a2�	0�TC��2

2h0�
. �35�

If the transition becomes tricritical then Tm→TC and cV di-
verges at the transition. Equivalently, at tricriticality h0�=0

and size of the jump �cV diverges. Using Eq. �25� we can
relate a system’s bare orientational order M0 to its proximity
to tricriticality �where M0=MTC� which gives

�cV � 	 M0

MTC
− 1
−1

. �36�

This relationship, shown in Fig. 10, allows us to see how the
size of the jump in specific heat would diverge if the orien-
tational order in the system could be tuned to approach MTC.
For systems with athermal M0 it should be experimentally
possible to drive the system to tricriticality by varying the
concentration.

B. Latent heat at the first-order Sm-A–Sm-C transition

For a first-order Sm-A–Sm-C transition there will be a
latent heat absorbed in going from the Sm-C phase to the
Sm-A phase. This latent heat vanishes when the transition
becomes tricritical. We obtain the latent heat l for our model
using l=−TC

dfc

dT evaluated at the first-order boundary, where

FIG. 10. The size of the specific heat jump �cV as a function of
the system’s orientational order M0. As M0→MTC the transition
becomes tricritical and the specific heat jump diverges. For systems
with athermal M0 it should be experimentally possible to drive the
system to tricriticality by varying the concentration.
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for fc we use the expression given in Eq. �29�. Using the
relationship between � and T, as given in Eq. �31�, we find

�l = �c
dfc

d�
�

�=�1st

= �c

a�h0��
2s0

. �37�

As the transition becomes tricritical h0�→0− and the latent
heat vanishes. Relating the system’s bare orientational order
M0 to its proximity to tricriticality �where M0=MTC� gives

l � 	1 −
M0

MTC

 . �38�

This relationship allows us to see how the latent heat would
vanish if the orientational order in the system could be tuned
to approach MTC. For systems with athermal M0 it should be
experimentally possible to drive the system to tricriticality,
and the latent heat to zero, by varying the concentration.

VI. BEHAVIOR OF THE LAYER SPACING
AND BIREFRINGENCE

NEAR THE Sm-A–Sm-C TRANSITION

We next analyze the behavior of the orientational order
�which is proportional to the birefringence� and the layering
wave vector �which is inversely proportional to layer spacing
d� close to the Sm-A–Sm-C transition. As discussed follow-
ing Eq. �9� above, for athermal M0 and q0, the temperature
variation of M =M0�1+�M� and q2=q0

2�1+�q� comes from
the corrections �M and �q, respectively. We thus seek the
temperature dependence of the corrections �M,q near the
Sm-A–Sm-C transition. Assuming, and verifying a poste-
riori, that the corrections are small, we Taylor expand the
free energy to order ��M,q�2 and minimize with respect to
�M,q, keeping only terms to lowest order in coupling coeffi-
cients. This is done both within the Sm-A phase and within
the Sm-C phase. Details of the analysis are given in the
Appendix.

A. Orientational order near the Sm-A–Sm-C transition

For the orientational order correction within the Sm-A
phase we find

�MA
= ��M

0 �	− 1 +
a0

3g0M0
�0
 , �39�

where �0 is just the bare value of �, i.e., � evaluated at M
=M0, 	=	0, and q=q0. To zeroth order in corrections �M,	,q,
�=�0. The quantity �M

0 =−3g0q0
2�	0�TC��2 /�M �0 and for a

continuous transition is just the value of the correction at the
continuous Sm-A–Sm-C boundary, i.e., where �0=0. At the
first-order Sm-A–Sm-C boundary near tricriticality, at which
�0=�1st�0, the correction is a little bit larger than �M

0 �15�.
Last, �M = �d2fM /dM2�M=M0

.
From Eq. �39� we see that as the Sm-A–Sm-C transition is

approached from the Sm-A phase, i.e., as �0→0+, the correc-
tion �MA

will decrease. For materials with sufficiently ather-
mal M0, this means that the orientational order will decrease
as the transition is approached from above. Using the fact
that birefringence �n is proportional to orientational order

M, the fractional change in birefringence ��n�
�n−�nAC

�nAC

�where the reader is reminded that �nAC is the value of the
birefringence in the Sm-A phase right at the Sm-A–Sm-C
boundary� can be related to �M. It is straightforward to show
that, to lowest order in �M, ��n��M −�M

0 . Thus, in the
Sm-A phase ��n��0 will decrease as the transition is ap-
proached from above, as shown in Fig. 7. This is a feature
that has been experimentally observed in some de Vries ma-
terials �8,9�. We find this feature particularly interesting, as it
is the first example that we know of in which the order of a
phase decreases as a transition to a lower symmetry phase is
approached. It should be noted that in materials with a suf-
ficiently strongly temperature dependent tN, the growth of the
“bare” �i.e., coupling-free� orientational order M0�tn� as T is
lowered swamps the effects due to the correction term �MA

.
In this case, the orientational order would grow as the tran-
sition is approached from above.

To find the correction near the transition within the Sm-C
phase one must separately analyze the three distinct regions
of the phase diagram, corresponding to XY, tricritical, and
first-order behavior. As one might expect, the dependence of
�M on �0� �T−TC� /TC�1 is different in each region. How-
ever, near tricriticality the dependence on the tilt order pa-
rameter c in each respective region �i.e., cXY, cTC, and c1st� is
identical and is given by

�MC
= ��M

0 ��− 1 +
1

2
	1 +

2h0q0
2

g0

c2� , �40�

where �M
0 is equal to the value of the correction in the Sm-A

phase right at the transition �15�. In each of the three regions
the orientational order grows as one moves into the Sm-C
phase, consistent with birefringence measurements of de
Vries materials. Using the fact that the optical axis tilt angle
��c near the transition, we predict that the fractional change
in birefringence will grow as ��n��2. It is important to note
that while the dependence of the growth of ��n on � is the
same in each of the three distinct regions of the phase dia-
gram, the dependence on �0 is not. This is because the de-
pendence of c �and thus �� on �0 differs in each of the three
regions. For sufficiently large orientational order, away from
the tricritical point c� ��0�1/2 and the growth of ��n near the
continuous transition will scale as �TC−T�. For smaller ori-
entational order, near the tricritical point c� ��0�1/4 and the
growth of ��n will scale as �TC−T�1/2. These scalings are
shown in Fig. 7. Thus, our model predicts that for continuous
transitions near tricriticality one will see a particularly rapid
growth of birefringence as one moves into the Sm-C phase.
For a first-order transition there will be a jump in c and thus
an associated jump in the birefringence. Close to the tricriti-
cal point, where the transition is weakly first order, this jump
will be small.

B. Layer spacing near the Sm-A–Sm-C transition

For the layering wave vector �which is inversely propor-
tional to the layer spacing� within the Sm-A phase we find
that
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�qA
= �q

0 +
a0M0

Kq0
2 �0, �41�

where �q
0=a1M0 /K is the value of the correction at the con-

tinuous Sm-A–Sm-C boundary and the reader is reminded
that a1= � da

d�q2� �q2=q0
2. At the first Sm-A–Sm-C boundary near

tricriticality, at which �0=�1st�0, the correction is a little bit
larger than �q

0 �16�. From the above equation we see that as
the Sm-A–Sm-C transition is approached, i.e., as �0→0+, the
layering wave vector decreases. This corresponds to the layer
spacing increasing, a feature which is generally observed ex-
perimentally.

As with the orientational order, it is necessary to sepa-
rately analyze the three distinct regions �XY, tricritical, and
first order� of the phase diagram to obtain the correction near
the Sm-A–Sm-C boundary in the Sm-C phase. Similarly,
while the dependence of this correction on �0 differs within
each region, the dependence on the respective tilt order pa-
rameter c in each region �i.e., cXY, cTC, and c1st� is identical.
It is given by

�qC
= �q

0 +
3�a1�M0

2K
c2, �42�

where �q
0 is equal to the value of the correction in the Sm-A

phase right at the transition �16� and for a layer contraction
�as opposed to dilation� to occur we have required a1�0.
Using the above equation and the relationship between layer
spacing �d� and wave vector �q=2� /d� we next seek the
contraction in the layer spacing. This contraction is defined
as �d= �dAC−dC� /dAC, where dAC and dC are the values of
the layer spacing in the Sm-A phase �right at the
Sm-A–Sm-C boundary� and in the Sm-C phase, respectively.
We find that this contraction is given by

�d =
3�a1�M0

4K
c2. �43�

Near the transition ��c and the fractional contraction scales
as �2, as one would expect from the simple geometric argu-
ment discussed in the Introduction. However, our theory pre-
dicts that this fractional contraction is also proportional to
the size of the orientational order M �M0. Thus, systems
with unusually small orientational order will exhibit an un-
usually small layer contraction, as shown in Fig. 5. Given the
fact that the tricritical point predicted by our model also
occurs for small orientational order, it would not be surpris-
ing for some de Vries materials to exhibit Sm-A–Sm-C tran-
sitions close to tricriticality. It should also be noted that for
the first-order transition, the contraction will be discontinu-
ous, although the size of the discontinuity will nonetheless
be proportional to the orientational order, which if small will
make the contraction small.

VII. SUMMARY

In summary, we have shown that our generalized Landau
theory exhibits a biaxiality induced Sm-A–Sm-C tricritical
point. The effect of the biaxiality is larger in systems with
small orientational order, which would correspond to sys-

tems with narrow Sm-A phases. This means that the two
mechanisms that have been proposed as leading to tricritical-
ity in a system, the coupling of tilt to biaxiality and the width
of the Sm-A phase, can both be attributed to the system pos-
sessing sufficiently small orientational order. For materials
with excluded volume interactions, one could reduce the ori-
entational order, and thus access a tricritical point, by reduc-
ing concentration. We have shown that the optical tilt, spe-
cific heat, and latent heat all exhibit the expected behavior
near tricriticality. In addition, we have explored the effect of
proximity to tricriticality on these quantities, and we have
quantified the effect in terms the degree of orientational or-
der in the system.

We have also analyzed the behavior of the birefringence
�via the orientational order� and the layer spacing �via the
wave vector� for each of the three possible types of transi-
tions �XY-like, tricritical, and first order� near tricriticality.
For de Vries material the birefringence has been shown to
increase upon entry to the Sm-C phase and for a continuous
transition this increase is more rapid the closer the transition
is to tricriticality. It was also shown that for materials with
excluded volume interactions, birefringence will decrease as
the Sm-A–Sm-C transition is approached from the Sm-A
phase, implying a nonmonotonic temperature dependence of
birefringence, a very unusual feature. We have used our
model to obtain a relationship between the layer contraction
and the tilt of the optical axis as a system moves into the
Sm-C phase, for any of the three possible types of transi-
tions. This relationship predicts that systems with small ori-
entational order in the Sm-A phase will exhibit a correspond-
ing small layer contraction. Our result correlates well with
the diffuse cone geometric argument of de Vries.

Our future work in this area will involve further general-
izing our model to include chirality. Having done so, we will
analyze the electroclinic effect in materials near the
Sm-A–Sm-C transition. Of particular interest will be how the
size of electro-optical response depends on orientational or-
der and proximity to a tricritical point.
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APPENDIX: CORRECTIONS TO THE BARE
ORIENTATIONAL ORDER AND TO THE BARE

LAYERING WAVE VECTOR

In this appendix we outline the procedure by which we
obtain the corrections �M and �q to the bare orientational
order and to the bare layering wave vector, respectively. This
is done near the Sm-A–Sm-C boundary for both the Sm-A
phase and the Sm-C phase. Near the Sm-A–Sm-C boundary
within the Sm-C phase, we analyze separately the three re-
gions of interest �XY-like, tricritical, and first order�.

1. Correction to the bare orientational order

In this section we find the correction �M to the bare ori-
entational order M0, where �M is defined via the full orien-
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tational order M =M0�1+�M�. This is done by expanding the
free energy to order ��M�2 in the phase of interest and then
finding the �M that minimizes the free energy.

a. Correction in the Sm-A phase

We begin our analysis of the correction in the Sm-A phase
by expanding fM, given by Eq. �9�,

fM � fM�M0� +
1

2
�MM0

2��M�2, �A1�

where �M = �d2fM /dM2�M=M0
. In both the Sm-A and -C

phases, a nonzero �M is due to the coupling parts of the free
energy. In the Sm-A phase only the piece fM	, given by Eq.
�10�, is nonzero. Expanding fM	, which requires the expan-
sion of �, yields

fM	 � fM	0
+ q0

2�	0�2M0�3g0M0 − a0�0��M , �A2�

where fM	0
and �0 are the bare values of fM	 and �, i.e.,

evaluated at M =M0, 	=	0, and q=q0. We have ignored or-
der ��M�2 terms, which are higher order in the coupling than
the ��M�2 term in Eq. �A1� and are thus subdominant. Mini-
mizing fM + fM	 with respect to �M gives

�MA
=

q0
2�	0�TC��2

M0�M
�− 3g0M0 + a0�0� , �A3�

where we have replaced 	0�	0�TC� near the Sm-A–Sm-C
transition. The above expression can be rearranged to give
Eq. �39�. From the above expression we see that the correc-
tion �M is on the order of the coupling parameters a0 and g0
and is thus small as was assumed in expanding the free en-
ergy.

b. Correction in the Sm-C phase

In finding the corrections in the Sm-C phase near the
Sm-A–Sm-C boundary we first follow the same procedure as
for the Sm-A phase, namely, the expansion of fM and fM	 as
given by Eqs. �A1� and �A2� above. We must also expand the
piece of coupling fc� that is nonzero in the Sm-C phase. The
prime indicates the use of the biaxiality renormalized uc�, as
given by Eq. �22�, in fc, which is given by Eq. �12�. For each
separate region of interest �XY, tricritical, and first order� we
use the appropriate expression for c in fc�.

In the XY-like region we find

fcXY
� = −

rc
2

4uc�
= −

�	�2a2�2

4h0�
. �A4�

Expanding � and h0� in powers of �M, keeping terms to low-
est order in �0 and coupling coefficients gives

fcXY
� � fcXY0

� +
�	0�TC��2M0a0�0

2h00�
�g0 + 2h0q0

2��M , �A5�

where fcXY0

� and h00� are the bare values of fcXY
� and h0�.

Minimizing fM + fM	+ fcXY
� with respect to �M gives

�MCXY
=

q0
2�	0�TC��2

M0�M
	− 3g0M0 +

a0��0�
2h00� q0

2 �g0 + 2h0q0
2�
 ,

�A6�

where, in neglecting the �0 dependent contribution from fM	,
we have used the fact that close to tricriticality h00� /h0�1.
Using the bare version of c=cXY as given by Eq. �26� this
expression can be rearranged to give Eq. �40�.

For the tricritical region where uc� is effectively zero, one
must use fc� evaluated at c=cTC which yields

fcTC
� = −

1

3
− rc

3

vc
= −

2�	�2

33
− a3�3

s0
. �A7�

Expanding � in powers of �M while keeping terms to lowest
order in �0 and coupling coefficients gives

fcTC
� � fcTC0

� − �	0�TC��2M0a0��0�
3s0

�g0 + 2h0q0
2��M ,

�A8�

where fcTC0

� is the bare value of fcTC
� .

Minimizing fM + fM	+ fcTC
� with respect to �M gives

�MCTC
=

q0
2�	0�TC��2

M0�M
	− 3g0M0 +a0��0�

3s0q0
4 �g0 + 2h0q0

2�
 ,

�A9�

where, in neglecting the �0 dependent contribution from fM	,
we have used the fact that �0��0 close to tricriticality, i.e.,
where ���1. Using the bare version of c=cTC as given by
Eq. �26� this expression can be rearranged to give Eq. �40�.

Lastly we obtain the correction in �M in the Sm-C phase
�where h0��0� near the first-order Sm-A–Sm-C boundary.
We do this by expanding fc� near the first-order Sm-A–Sm-C
boundary, the expression for which is given by Eq. �29�.
Expanding �, h0� and �� �which depends on h0�� in powers of
�M while keeping terms to lowest order in �0 and coupling
coefficients gives

fc1st
� � fc1st0

� −
�	0�TC��2M0�h00� �

3s0

�	1 +1 −
4�

����

�g0 + 2h0q0

2��M , �A10�

where fc1st0
� is the bare value of fc1st

� .

Minimizing fM + fM	+ fc1st
� with respect to �M gives

�MC1st
=

q0
2�	0�TC��2

M0�M
�− 3g0M0 +

�h00� �
3s0q0

2

�	1 +1 −
4�

���0
�
�g0 + 2h0q0

2�� , �A11�

where ��0
is the bare value of �� and, in neglecting the

�0-dependent contribution from fM	, we have used the fact
that close to tricriticality h00� /h0�1. Using the bare version
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of c=c1st as given by Eq. �28� this expression can be rear-
ranged to give Eq. �40�.

2. Correction to the bare wave vector

In this section we find the correction �q to the bare wave
vector q0, where �q is defined via the full wave vector q2

=q0
2�1+�q�. As with the orientational order, this is done by

expanding the free energy to order ��q�2 in the phase of
interest and then finding the �q that minimizes the free en-
ergy.

a. Correction in the Sm-A phase

We begin our expansion of the free energy in powers of
�q by expanding f	, given by Eq. �7�,

f	 �
1

2
K�	0�2q0

4�q
2. �A12�

In both the Sm-A and -C phases, a nonzero �q is due to the
coupling parts of the free energy. In the Sm-A phase only the
piece fM	, given by Eq. �10�, is nonzero. Expanding fM	

yields

fM	 � fM	0
− q0

2�	0�2M0�a1q0
2 + a0�0��q, �A13�

where we have used the fact that M is small near tricritical-
ity. We have ignored order ��q�2 terms, which are higher
order in the coupling than the ��q�2 term in Eq. �A12� and
are thus subdominant. Minimizing fM + fM	 with respect to
�q gives

�qA
=

M0

Kq0
2 �a1q0

2 + a0�0� . �A14�

The above expression can be rearranged to give Eq. �41�.
From the above expression we see that the correction �q is
on the order of the coupling parameters a0 and a1 and is thus
small as was assumed in expanding the free energy.

b. Correction in the Sm-C phase

In finding the corrections in the Sm-C phase near the
Sm-A–Sm-C boundary we follow the same procedure as for
the orientational order. To obtain the correction within the
XY-like region we use fcXY

� as given by Eq. �A4�. Expanding
� and h0� in powers of �q, keeping terms to lowest order in �0
and coupling coefficients gives

fcXY
� � fcXY0

� −
�	0�TC��2a1q0

2a0�0

2h00�
�q, �A15�

where we have used the fact that M is small near tricritical-
ity.

Minimizing fM + fM	+ fcXY
� with respect to �q gives

�qCXY
=

a1

Kq0
2	M0q0

2 −
a0��0�
2h00�


 , �A16�

where, in neglecting the �0-dependent contribution from fM	,
we have used the fact that close to tricriticality h00� /h0�1.
Using the bare version of c=cXY as given by Eq. �26� this
expression can be rearranged to give Eq. �42�.

For the tricritical region we use fcTC
� as given by Eq. �A7�.

Expanding a and � in powers of �q while keeping terms to
lowest order in �0 and coupling coefficients gives

fcTC
� � fcTC0

� + �	0�TC��2q0
2a1a0��0�

3s0
�q, �A17�

where we have used the fact that M is small near tricritical-
ity.

Minimizing fM + fM	+ fcTC
� with respect to �q gives

�qCTC
=

a1

Kq0
2	M0q0

2 −a0��0�
3s0


 , �A18�

where, in neglecting the �0-dependent contribution from fM	,
we have used the fact that �0��0 close to tricriticality, i.e.,
where ���1. Using the bare version of c=cTC as given by
Eq. �26� this expression can be rearranged to give Eq. �42�.

We conclude by obtaining the correction in �q in the
Sm-C phase �where h0��0� near the first-order Sm-A–Sm-C
boundary. We do this by expanding fc� near the first-order
Sm-A–Sm-C boundary, the expression for which is given by
Eq. �29�. Expanding � and h0� in powers of �q, keeping terms
to lowest order in �0 and coupling coefficients gives

fc1st
� � fc1st0

� +
�	0�TC��2a1q0

2�h00� �
3s0

	1 +1 −
4�

����

�q,

�A19�

where we have used the fact that M is small near tricritical-
ity.

Minimizing fM + fM	+ fc1st
� with respect to �q gives

�MC1st
=

a1

Kq0
2�M0q0

2 −
�h00� �
3s0

	1 +1 −
4�

����

� , �A20�

where, in neglecting the �0-dependent contribution from fM	,
we have used the fact that close to tricriticality h00� /h0�1.
Using the bare version of c=c1st as given by Eq. �28� this
expression can be rearranged to give Eq. �42�.
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